On the optimality of nonlinear fractional disjunctive programming problems
نویسنده
چکیده
This paper is concerned with the study of necessary and sufficient optimality conditions for convex–concave fractional disjunctive programming problems for which the decision set is the union of a family of convex sets. The Lagrangian function for such problems is defined and the Kuhn–Tucker saddle and stationary points are characterized. In addition, some important theorems related to the Kuhn–Tucker problem for saddle and stationary points are established. Moreover, a general dual problem is formulated, and weak, strong and converse duality theorems are proved. Throughout the presented paper illustrative examples are given to clarify and implement the developed theory. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملA study on optimality and duality theorems of nonlinear generalized disjunctive fractional programming
This paper is concerned with the study of necessary and sufficient optimality conditions for convex–concave generalized fractional disjunctive programming problems for which the decision set is the union of a family of convex sets. The Lagrangian function for such problems is defined and the Kuhn–Tucker Saddle and Stationary points are characterized. In addition, some important theorems related...
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملIntegrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems
In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 53 شماره
صفحات -
تاریخ انتشار 2007